#author("2024-07-18T10:41:30+08:00","default:Admin","Admin") #author("2024-07-18T10:43:31+08:00","default:Admin","Admin") [[Deep Learning]] #contents &color(red){※前提条件:本情報はWhisper 1.5.0を基づいて説明してる}; * Whisper [#v9e2bc78] 这个方案就是 OpenAI 开源的 Whisper,当然是用 Python 写的了,只需要简单安装几个包,然后几行代码一写,稍等片刻(根据你的机器性能和音视频长度不一),最终的文本内容就出来了,就是这么简单。 GitHub 仓库地址: https://github.com/openai/whisper 参考 https://blog.csdn.net/xiaohucxy/article/details/134838912 Model 下载位置: https://huggingface.co/ggerganov/whisper.cpp/tree/main //不同人提交的 https://huggingface.co/Systran ** CPU [#vca4d666] NuGet安装下面两个包 - Whisper.net - Whisper.net.Runtime ** GPU [#i3b54b68] NuGet安装下面两个包 - Whisper.net - Whisper.net.Runtime.Clblast - Whisper.net.Runtime.Cublas: Cublas 是 NVIDIA 提供的一个线性代数库,它包含一系列用于解决线性代数问题的函数,例如矩阵和向量相乘、矩阵相乘等。 - Whisper.net.Runtime.Clblast: Clblast 是一个用于 OpenCL 的 BLAS (基础线性代数子程序) 库,它提供了一系列用于执行线性代数运算的函数。 * Fast-Whisper [#e9d4529a] 虽然已经很简单了,但是对于程序员来说还是不够简洁,毕竟程序员都很“懒”,Whisper 虽说安装和调用已经很简单了,但还是需要独立安装 PyTorch 、ffmpeg 甚至 Rust。 于是,就有了更快、更简洁的 Fast-Whisper。Fast-Whisper 并不是简单封装了一下 Whisper,而是是使用 CTranslate2 重新实现 OpenAI 的 Whisper 模型,CTranslate2 是 Transformer 模型的快速推理引擎。 总结一下,也就是比 Whisper 更快,官方的说法是比 Whisper 快了 4-8 倍。不仅能支持 GPU ,还能支持 CPU,连我这台破 Mac 也能用。 GitHub 仓库地址: https://github.com/SYSTRAN/faster-whisper CUDA的下载路径: https://developer.nvidia.com/cuda-downloads 运行保存在本地的large-v3模型 #codeprettify{{ from faster_whisper import WhisperModel model_size = "small" path = r"E:\aSer\whisper\faster-whisper-small" # Run on GPU with FP16 model = WhisperModel(model_size_or_path=path, device="cpu", compute_type="int8", local_files_only=True) # or run on GPU with INT8 # model = WhisperModel(model_size, device="cuda", compute_type="int8_float16") # or run on CPU with INT8 # model = WhisperModel(model_size, device="cpu", compute_type="int8") segments, info = model.transcribe("E:\\aSer\\whisper\\20240716091034.wav", beam_size=5, language="zh", vad_filter=True, vad_parameters=dict(min_silence_duration_ms=1000)) for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) }} ** 下载地址 [#td954730] 只能翻墙才能访问到 |large-v3模型|https://huggingface.co/Systran/faster-whisper-large-v3/tree/main| |large-v2模型|https://huggingface.co/guillaumekln/faster-whisper-large-v2/tree/main| |large-v2模型|https://huggingface.co/guillaumekln/faster-whisper-large-v1/tree/main| |medium模型|https://huggingface.co/guillaumekln/faster-whisper-medium/tree/main| |small模型|https://huggingface.co/guillaumekln/faster-whisper-small/tree/main| |base模型|https://huggingface.co/guillaumekln/faster-whisper-base/tree/main| |tiny模型|https://huggingface.co/guillaumekln/faster-whisper-tiny/tree/main| 下载cuBLAS and cuDNN https://github.com/Purfview/whisper-standalone-win/releases/tag/libs ** 环境配置 [#ae0befd5] 创建环境 在conda环境中创建python运行环境 conda create -n faster_whisper python=3.9 # python版本要求3.8到3.11 激活虚拟环境 conda activate faster_whisper 安装faster-whisper依赖 pip install faster-whisper * Distil-Whisper [#e89abc06] Distil-Whisper is a distilled version of Whisper that is 6 times faster, 49% smaller, and performs within 1% word error rate (WER) on out-of-distribution evaluation sets: https://github.com/huggingface/distil-whisper?tab=readme-ov-file Model下载位置 https://huggingface.co/distil-whisper/distil-large-v3 #hr(); コメント: #comment_kcaptcha